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Abstract
Predicting the popularity dynamics of Twitter hash-
tags has a broad spectrum of applications. Exist-
ing works have primarily focused on modeling the
popularity of individual tweets rather than the un-
derlying hashtags. As a result, they fail to consider
several realistic factors contributing to hashtag pop-
ularity. In this paper, we propose Large Margin
Point Process (LMPP), a probabilistic framework
that integrates hashtag-tweet influence and hashtag-
hashtag competitions, the two factors which play
important roles in hashtag propagation. Further-
more, while considering the hashtag competitions,
LMPP looks into the variations of popularity rank-
ings of the competing hashtags across time. Ex-
tensive experiments on seven real datasets demon-
strate that LMPP outperforms existing popularity
prediction approaches by a significant margin. Ad-
ditionally, LMPP can accurately predict the relative
rankings of competing hashtags, offering additional
advantage over the state-of-the-art baselines.

1 Introduction
To improve the efficacy of Twitter, prediction of hashtag flow
(e.g., early detection of trending hashtags [Mathioudakis and
Koudas, 2010; Chakraborty et al., 2017]) is important. Thus,
a large amount of research on viral marketing and informa-
tion cascades [Cheng et al., 2016; Chakraborty et al., 2016;
Sikdar et al., 2016] have focused on analyzing hashtag-
popularity and its role in tweet propagation.
Prior works and their limitations: Research on predictive
aspects of hashtag-popularity primarily follows two kinds of
models: (i) Static feature-based models ([Rosenfeld et al.,
2016; Bourigault et al., 2014; Shi et al., 2016] and the cita-
tions therein), and (ii) Temporal models ([Zhao et al., 2015;
Kobayashi and Lambiotte, 2016; Farajtabar et al., 2015;
Bi and Cho, 2016; De et al., 2016a; Iwata et al., 2013;
De et al., 2014; Kupavskii et al., 2012; Hua-Wei et al., 2014;
Shuai and Jun, 2015; Gao et al., 2016; Ferraz Costa et al.,
2015; Bao et al., 2015; Liniger, 2009; Blundell et al., 2012;
Zhou et al., 2013; Gomez-Rodriguez et al., 2011; De et al.,
2016b]). In the static models, the temporal properties (e.g.,
time of posts, no. of retweets) are embedded into feature

maps, and the parameters are learned following a supervised
approach. However, in practice, future temporal properties
are not known in advance, which in turn constrains their fore-
casting prowess. The temporal models aim to address this
shortcoming by modeling the stochastic nature of hashtag-
dynamics, using point-process, survival theory, etc. However,
most existing temporal models focus on tweet-propagation
rather than hashtags, thereby skirting several realistic aspects
of hashtag-flow, and resulting in modest prediction perfor-
mance. More importantly, they are largely unable to repro-
duce any microscopic feature in hashtag dynamics (e.g., rela-
tive popularity variation, sudden trend change etc.).
In general, the popularity of a hashtag depends on two pri-
mary factors: (i) hashtag-tweet reinforcement, and (ii) inter-
hashtag competitions. Every hashtag has an intrinsic attrac-
tiveness, and similarly the tweets bearing the hashtag also
have their own appeal. In our earlier work [Samanta et al.,
2017], we showed that these two factors often reinforce each
other. For example, an unpopular hashtag sometimes be-
comes viral due to the presence of some popular tweets. Sim-
ilarly, a not-so-popular tweet may become popular later on
due to the popularity of the hashtag it is bearing. Since tra-
ditional temporal approaches bank on modeling only tweet-
propagation, simply extending these prediction-frameworks
to hashtags, would not produce accurate results (our experi-
mental results also emphatically establish that).
However, considering only the hashtag-tweet reinforcement
process still leaves a paucity in the realistic modeling of
hashtag-flow, that demands a careful consideration of the
inter-hashtag competitions. In many cases, a newly popular
hashtag may abbreviate the visibility of other popular hash-
tags. For example, often a breaking-news hails new hashtags
which quickly get popularized and in the process, at least for
a short span of time, suppress the popularity of other consis-
tently popular hashtags, i.e., in practice, two hashtags often
compete, rather than reinforcing each other’s dissemination.
Some recent works [Valera and Gomez-Rodriguez, 2015;
Myers and Leskovec, 2012] attempted to model competitions
in different contexts; however, they rely heavily on feature-
engineering and underlying networks [De et al., 2013], mak-
ing them inefficient in online learning.
Present work and road-map: In this paper, we develop
Large Margin Point Process (LMPP), a novel probabilistic
framework that models the dynamics of hashtag popularity



by unifying the above two factors in a principled way. The
inherent hashtag-popularity often reinforces the virality of its
constituent tweet-chains and vice-versa, which LMPP aims
to capture using a generalized triggering kernel. In this pro-
cess, LMPP considers the hashtag-tweet reinforcement factor
to vary widely across the popularity distribution of tweets.
Furthermore, LMPP aims to incorporate competition among
the hashtags and its impact on hashtag dynamics. In order to
do that, we probe into the variations in the popularity rank-
ings of the concurrent and related hashtags. Therefore, to
capture such signals, we suitably curate the parameter space
of LMPP that ensures correct ordering of popularity across
several time intervals. Such a formulation intuitively artic-
ulates the competition process, without drastically changing
the model-setting. In fact, this additional trait helps to prop-
erly train the model, which in turn enables it to detect sudden
drifts in popularity rankings of the competing hashtags.
Our contributions: Summarizing, in this paper, we develop
a novel stochastic framework for modeling hashtag dissem-
ination, that unifies the role of hashtag-tweet reinforcement
process and inter-hashtag competition in a principled way.
LMPP can also be seen as an instance of a large-margin esti-
mation where the constraints utilize the popularity differences
among competing hashtags, thereby enabling the model to
maximize the associated popularity margins along with the
corresponding likelihood. Such a setting helps the model to
estimate ranks on the fly, a crucial practical challenge that
was left unaddressed in the literature. On seven real-world
datasets crawled from Twitter, LMPP offers substantial accu-
racy gains in predicting popularity of hashtags, beyond strong
baselines. By accurately considering the competition process,
it can successfully model the ranking dynamics over time, of
the correlated hashtags, which none of the existing baselines
can even consistently trace. Consequently, it can reasonably
forecast the abrupt popularity changes of hashtags which, in
general, is considered a difficult phenomenon to reproduce.

2 Proposed Model
2.1 Overview
Terminology: We define a tweet-chain as the set consisting
of a tweet and all its retweet instances. In this work, we rep-
resent a tweet by a unique id, and a tweet-chain in terms of
the posting times of the tweet and all her retweets. Formally,
a tweet-chain Ci, corresponding to tweet i, can be written
as Ci = {tj |tweet i is (re)tweeted at time tj}. Similarly, a
hashtag H can be expressed in terms of the tweet-chains,
H = {Ci|Ci is a tweet-chain bearingH}. Finally, the his-
tory of the hashtag H until and excluding time t,HH(t) can
be represented as the union of the posting times of the corre-
sponding (re)tweets posted before t.

HH(t) = ∪Ci∈H{tj |tj ∈ Ci and tj < t}
Computation of hashtag popularity: In a similar spirit
to [Zhao et al., 2015], we measure the popularity of a hash-
tag by the total number of its constituent tweet-posts. To do
so, we propose LMPP, that models the temporal dynamics
of the constituent tweets of a hashtag in terms of post-rate.
While modeling such a post-rate, LMPP combines the role of
hashtag-tweet reinforcement and hashtag competitions in the
overall popularity dynamics.

Basic generative process for tweet-chains: At the outset,
we represent the posting times of the (re)tweets as a point-
process model. In particular, given a hashtag H , we define
the counting variable as NH(t), where NH(t) ∈ {0} ∪ Z+

counts the number of (re)tweets posted until and excluding
time t. Then, we characterize the conditional probability of
observing an event in infinitesimal time interval [t, t+ dt)] as

P(An event triggers in [t, t+ dt)|HH(t)) = λH(t) dt (1)
i.e., EdNH(t)∼{0,1}[dNH(t)|HH(t)] = λH(t)dt (2)

Here dNH(t) indicates the number of (re)tweets in the in-
finitesimal time-window [t, t + dt) and λH(t) stands for
the associated hashtag intensities, which further depends on
the history HH(t). The functional form of λH(t) is cho-
sen to capture the phenomenon of interests that possibly
encompass hashtag-competitions, self-exciting dynamics or
hashtag-tweet interactions. In the following, we present
a specific characterization of λH(t) that captures the self-
exciting nature of hashtag dynamics.
Self-exciting dynamics: To capture the mutual excitation
between (re)tweet posting events, we rely on Hawkes pro-
cess [Farajtabar et al., 2014; De et al., 2016b]. It is a partic-
ular type of functional form used in the growing literature on
social activity modeling using point processes [Farajtabar et
al., 2014; Valera and Gomez-Rodriguez, 2015]:

λH(t) =λH,0 + β
∑

ti∈HH(t)

e−ω0(t−ti)

= λH,0 + β(κ(t) ? dNH(t)) (3)
Here, λH,0 > 0, models the initial post-rate of (re)tweets, and
the second term, with β > 0, assigns weight to the influence
of the publication of earlier (re)tweets. κ(t) = e−ω0t is an ex-
ponential triggering kernel indicating the decay of influence
of the past events over time, and ? denotes the convolution
operation.

2.2 LMPP: Modeling hashtag-tweet reinforcement
and inter-hashtag competitions

Apart from the inherent popularity dynamics of the tweet-
chains, our proposed framework LMPP considers two more
crucial factors in modeling the popularity dynamics of a hash-
tag: (i) the mutual reinforcement process between hashtags
and tweets, and (ii) the competitions among hashtags.
We observe that, it is the intensity kernel κ(t) (in Eq (3))
that accounts for the self-exciting mechanism for the Hawkes
process. Therefore, we aim to construct a suitable κ(t) which
should, along with the self-exciting reinforcement process of
the individual tweets, capture the hashtag-tweet reinforce-
ment factor. Note that, the influence of a hashtag is only
exposed through the tweets, and the effect of the hashtag
on a tweet is more enunciated via a popular tweet than a
rare tweet. Therefore, the hashtag-tweet reinforcement factor
should vary across the popularity distribution of the tweets.
Thus, the kernel should be further parameterized by tweet-
popularity index k (defined in Section 2.3), to have κk(t).
Particularly, κk(t) should be chosen in such way that
• Given a hashtag, when a popular tweet is retweeted i.e.,
when k goes high, the inherent attractiveness of the hash-
tag heavily influences its propagation process. That is, κk(t)



pushes λH(t) more towards a Hawkes process. Therefore,
the overall resulting dynamics become more and more bursty.
• For non-popular tweets, the effect of the resultant influence
of the hashtag is very low on its propagation process. Thus, a
low value of κk(t) should fare in a relatively small λH(t).
Considering the above points, we take κk(t) as

κk(t) = κ∞(t)e−
ωt
k (4)

κk(t) has two factors. κ∞(t) indicates the self exciting pro-
cess of the tweets, while e−

ωt
k stands for the hashtag-tweet

influence. Note that, the impact of a tweet on the hashtag
grows high, as the popular tweets get posted and vice-versa.
Furthermore, we try to approximate κ∞(t) as a more gener-
alized intensity kernel κ∞(t) =

∑M
j=1 βje

−ωjt where M is
a large integer.
Then, the arrival rate of tweets can be written as

λH(t;k(t)) = λH,0e
−εt +

M∑
j=1

βjH
∑

ti∈HH(t)

e
−(ωj+ ω

k(ti)
)(t−ti)

(5)
Here, k(ti) is the popularity of tweet posted at time ti, and
k(t) := {k(ti)|ti ∈ HH(t)}. For compactness, we denote
ωωω = [ω1, ω2, ....ωM ]. Here, an additional decay factor e−εt
is incorporated to diminish the effect of the initial condition,
which we found to work well in practice.

2.3 Popularity distribution
We observe that given a hashtag, the distribution of the pop-
ularity indices of individual tweets follows a power-law (fig-
ures omitted for brevity), which means that the tweets getting
very high re-tweets are very small in number, whereas plenty
of tweets are having small number of retweets. The distribu-
tion is captured as below:

p(k) = ck−α with c = α− 1 (6)
where k is the popularity of a tweet-chain.
Hence, the expected arrival rate of the process having tweet-
chains with random popularity can be formulated as:

λ̃H(t) = Ek[λH(t;k(t))] =

∫ ∞
1

cλH(t;k(t))k−αdk (7)

where, c is a constant given by Eq. (6).

2.4 Popularity ranking in hashtag competition
In a tweet-diffusion process, concurrent hashtags often com-
pete with each other for user attention. Such scenarios are
usually pronounced through the variations of popularity rank-
ings of the competing hashtags over time. To model it, one
may specify λH(t), so that, it detects the variation in their
popularity rankings across time. In particular, we say
NH1

[ts, tf ) > NH2
[ts, tf ) =⇒∫ tf

ts

λH1(t)dt ≥
∫ tf

ts

λH2(t)dt+ 1 ∀H1,H2 and ts < tf

(8)
where, NH [ts, tf ) denotes the number of (re)tweets of hash-
tagH posted in the interval [ts, tf )

2.5 Parameter estimation
Given a set ofN hashtags H = {Hl|1 ≤ l ≤ N}, we record a
collection of posts HHl

(T ) = {ti} for each hashtag Hl dur-

Datasets Duration #Hashtags #Tweets Mean rank
diversity

Oscars Feb 24 to Feb 29, ’16 15 20,536 0.60
MTV-Awards Apr 3 to Apr 12, ’16 20 7,897 0.75

Nepal-Earthquake Apr 25 to May 1, ’15 25 32,613 0.70
Dem-Primary Feb to June, ’16 15 21,746 0.72

BBD Oct 6 to Oct 8, ’14 20 67,399 0.51
Copa June 3 to June 26, ’16 15 12,853 0.63

T20WC Mar 8 to Apr 3, ’16 10 5,854 0.77

Table 1: Summary of the datasets.

ing a time period [0, T ). Using these posts, we attempt to find
the optimal parameters λH,0 and βH = [β1

H , β
2
H , ..., β

M
H ]

for each hashtag H ∈ H by solving a maximum likelihood
estimation (MLE) problem. To do so, it is easy to show that
the resulting log-likelihood function is

log[L(λH,0,B|ε,ωωω, ω)]

=
∑
H∈H

∑
ti∈HH(T )

log λH(ti)−
∑
H∈H

∫ T

0

λH(t)dt (9)

where, λH,0 := [λH1,0, λH2,0, ..., λHN ,0] and B ∈ RN×M
withBl,i = βiHl

are the variables to be estimated.
To incorporate the effect of competing hashtags, we further
restrict λH(t) following Eq (8), by first splitting the interval
[0, T ), into L sets of small, equal and disjoint subintervals
[0, Ts), [Ts, 2Ts), . . . , [(L− 1)Ts, T ), where Ts = T/L, and
then imposing the following constraints:
Whenever, NH [iTs, (i+ 1)Ts) ≥ NH′ [iTs, (i+ 1)Ts),∫ (i+1)Ts

iTs

(λH(t)− λH′(t))dt ≥ 1; H,H ′ ∈ H, 0 ≤ i ≤ L− 1

Similar to SVM [Weston, 2014], such a hard-margin ap-
proach often may lead to an infeasible solution. Therefore,
we introduce slack variables,

ζiH,H′ = max(0, 1− yiH,H′

∫ (i+1)Ts

iTs

[λH(t)− λH′(t)]dt)

with

yiH,H′ = sign(NH [iTs, (i+ 1)Ts)−NH′ [iTs, (i+ 1)Ts))
and cast the problem as

max
λH,0, B

log[L(λH,0,B|ε,ωωω, ω)]− C
L−1∑
i=0

∑
H,H′∈H

ζiH,H′

with, yiH,H′

∫ (i+1)Ts

iTs

(
λH(t)− λH′(t)

)
dt ≥ 1− ζiH,H′

(10)

∀H,H ′ ∈ H and 0 ≤ i ≤ L− 1
Note that the above problem is convex and thus can be
solved efficiently. We call this framework, Large-Margin
self-exciting Point Process (LMPP), since it incorporates the
variations in ranking by increasing the popularity-margins of
competing hashtags while maximizing the corresponding log-
likelihood.

2.6 Popularity forecasting
Our goal here is to develop efficient methods that leverage
our model to forecast a hashtag’s popularity at a given time
t. In the context of our model, we aim to compute N∗H(t) =
EHH(t)[NH(t)], the expected value of total retweet counts of



all tweets for a given hashtagH .

N∗H(t) = EHH(t)[NH(t)] = EHH(t)

[ ∫ t

0

λ̃H(t)dt
]

Theorem 1 The expected popularity of a hashtag H at time
t is given by,

EHH(t)

[ ∫ t

0

λ̃H(τ)dτ
]

=
1

ε
λH,0(1− e−εt)

+ λH,0

M∑
j=1

∫ t

0

[ ∞∑
k=0

(bjHt
(2−α))k

Γ((2− α)k)
e−ωjt

]
? e−εtdt (11)

where bjH =
ω

(1−α)
j βjH(α−1)π
sin((α−1)π) .

Proof From Eq. (7), we have
λ̃H(t) = λH,0e

−εt

+ c

M∑
j=1

βjH

∫ ∞
1

∫ t

0

e−(ωj+
ω
k )(t−θ)k−αdNH(θ)dk (12)

A trite calculation reduces Eq. (12) to,
λ̃H(t) =λH,0e

−εt+
M∑
j=1

ajH

∫ t

0

e−ωj(t−θ)(ω(t− θ))1−αdNH(θ) (13)

where ajH = cβjHΓ(α− 1) = βjHΓ(α).
Since EdNH(θ)∼{0,1}[dNH(θ)|HH(θ)] = λH(θ)dθ, by tak-
ing the Laplace transform of Eq (13) and then applying in-
verse Laplace transform, we obtain

λ̃H(t) = λH,0e
−εt + λH,0

[ ∞∑
k=0

M∑
j=1

(bjHt
(2−α))k

Γ((2− α)k)
e−ωjt

]
? e−εt

On integrating the above, we obtain Eq. (11).

3 Experimental Evaluation
In this section, we first describe the datasets used, the evalu-
ation protocol, a short description of baseline paradigms and
then provide a detailed comparative performance analysis of
our proposal and the baselines.
3.1 Datasets
To implement our proposal, we collected seven datasets asso-
ciated with a diverse set of real events. The events are chosen
in such a way that they provide significant number of mes-
sages. So, we focus on popular events from entertainment,
sports, e-commerce and disaster. We used Twitter search API
to collect all the tweets (corresponding to a 2-3 weeks pe-
riod around the event date) of the following events/topics,
also summarized in Table 1. (i) The Academy Awards 2016
(Oscars), (ii) MTV Awards 2016 (MTV), (iii) Earthquake in
Nepal 2015 (Nepal-Earthquake), (iv) Democratic Primaries
for US Presidential Election 2016 (Dem-Primary), (v) Big
Billion Day sale of e-commerce site Flipkart 2014 (BBD),
(vi) Copa America Football Tournament 2016 (Copa), and
(vii) T20 Cricket World Cup 2016 (T20WC). We crawled
∼2 million tweets for each dataset. Thereafter, from each
dataset, we carefully select the hashtags in such a way that,
(i) there are a significant number of concurrent hashtags with
large tweet count, (ii) the hashtags have variations in terms of

the number of constituent tweet chains and (iii) the hashtags
show notable deviations in the popularity ranking list across
time. As an aggregated measure of such deviations, we define
rank-diversity of a hashtag as the fraction of times its rank has
changed. If out of total I time-windows, a hashtag H ∈ H
has changed her rank k times, then rank-diversity(H)=k/I .
The mean rank-diversity of a dataset is thereby obtained by
averaging the rank-diversity of all hashtags in the correspond-
ing dataset (shown in Table 1).

3.2 Evaluation protocol
Training and testing: Given a stream of temporal data HH
for hashtags H ∈ H, we first split it into training and test set
where training comprises of the first 80% of the total num-
ber of messages (|H|). We use this 80% messages as input to
train our model for estimating the parameters. Here, to con-
struct the constraints (Eq 10), we divide the training-time in
several ten-hour intervals and compare the popularity of the
competing hashtags in each of them. The estimated model
is thereafter used to predict the popularity dynamics of the
hashtags in the test set. In order to determine the predictive
prowess of LMPP (and the baselines), we follow two differ-
ent evaluation approaches.
(i) Forecasting hashtag popularity: In this approach, the
predictor aims to forecast the hashtag popularity by comput-
ing the expected number of message-posts in the test set.
(ii) Rank prediction of competing hashtags: As mentioned
earlier, hashtag competition usually exhibits variations in the
popularity rankings of the corresponding hashtags. Here, we
attempt to retrieve the popularity rankings of competing hash-
tags in the test-set, which in turn indicates how efficiently an
algorithm captures the phenomenon of hashtag competition.

3.3 Evaluation metrics
We use the following performance metrics to compare our
proposal and all the baselines. The first metric, MAPE, eval-
uates the forecasting power of the algorithms, whereas the
rest two measure the ability of rank-prediction of the compet-
ing hashtags.
Mean Absolute Percentage Error (MAPE): It captures the
mean deviation between the observed and the predicted pop-
ularity for a hahstag up to time t. It is defined by the formula

MAPE(H) =
1

MH

MH−1∑
i=0

∣∣∣∣∣N̂H(ti)−NH(ti)

NH(ti)

∣∣∣∣∣ .
Here N̂H(t) and NH(t) are the estimated and actual number
of retweets for a hashtag H respectively, at time t. MH de-
notes the total number messages of hashtagH in the test-set.
For a given dataset, we report MAPE as the average of all
MAPE(H) over the hashtagsH of that dataset.
Spearman’s Rank Correlation Coefficient (SRCC): The
Spearman’s Rank Correlation Coefficient between predicted
rank-list R̂H, and actual rank-list RH of a hashtag set H can
be defined as,

ρ(R̂H, RH) =
Cov(R̂H, RH)√
Var(R̂H)Var(RH)

.

Here Cov(.) defines covariance of the two variables, and
Var(.) denotes the variance.



MAPE(%) SRCC
Datasets LMPP HTR RPP Hawkes SEISMIC SpikeM LMPP HTR RPP Hawkes SEISMIC SpikeM
Oscars 18.90 (1.7%) 21.78 24.30 19.23 24.79 27.11 0.85 0.68 0.80 0.52 0.10 0.74

MTV-Awards 05.14 (23.7%) 06.76 15.37 13.57 19.09 24.45 0.87 0.86 0.81 0.75 0.70 0.82
Nepal-Earthquake 07.50 (12.2%) 08.54 22.28 15.42 13.73 17.95 0.91 0.87 0.63 0.32 0.63 0.75

Dem-Primary 08.33 (20.7%) 10.50 11.33 11.62 26.09 19.12 0.86 0.68 0.80 0.51 0.10 0.73
BBD 15.40 (3.4%) 17.94 19.09 15.94 18.03 20.89 0.95 0.79 0.90 0.91 0.43 0.79
Copa 17.67 (0.4%) 20.07 17.75 19.18 23.32 22.44 0.91 0.42 0.75 0.88 0.42 0.64

T20WC 10.25 (13.9%) 11.90 13.10 15.08 25.55 41.74 0.87 0.58 0.83 0.31 0.56 0.47

Table 2: MAPE (%) and SRCC of proposed and baseline algorithms on all datasets with 20% held-out set. The cells with light orange (blue)
color indicates the best (second best) predictor. Numbers in the bracket denote percentage improvement over the nearest baseline. Numbers
in the italics indicate the best performer among the four state-of-the-art baselines.
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Figure 1: Variation of popularity forecasting performance with time using a 20% held-out set for each real-world dataset. Performance is
measured in terms of MAPE (%)(top row) on popularity and SRCC (bottom row) between predicted and actual popularity rankings.

Avg. Recall (AvRe) and Avg. Precision (AvPr) (for jump
detection): If in two consecutive time-intervals there is a
sudden change in the rank of a hashtag by more than half
the total no. of competing hashtags, we call it a jump.
Let the set of hashtags be H and the rank of a hashtag
H ∈ H be rankH,[ti,ti+1) at time-interval [ti, ti+1). Then,
if |rankH,[ti,ti+1) − rankH,[ti−1,ti)| ≥ |H|/2, it is considered
a jump. Recall measures the fraction of cases an algorithm
rightly identifies a jump, while precision measures the frac-
tion of time a real jump has occurred when the algorithm pre-
dicts a jump. Incidentally a jump is also referred to as ‘Flash
in the pan’ (as described in [Yang and Leskovec, 2011]).

3.4 Baselines

We compare LMPP with five strong baselines: (i) Rein-
forced Point Process (RPP) [Hua-Wei et al., 2014], (ii)
Simple Hawkes process [Bao et al., 2015], (iii) SEIS-
MIC [Zhao et al., 2015], (iv) SpikeM [Matsubara et al., 2015;
Yang and Leskovec, 2011], and (v) HTR (Hashtag Tweet
Reinforcement model) [Samanta et al., 2017]. The baselines
represent a diverse class of existing temporal models. For
example, RPP considers intrinsic attractiveness followed by
a decay in popularity, Hawkes and SEISMIC represent the
self-exciting processes, whereas SpikeM is a temporal pattern
based approach. RPP, Hawkes and SEISMIC were primarily
proposed for single tweet popularity prediction, which we ex-
tended for hashtags by aggregating over the popularity of the
corresponding tweets. Finally, HTR only considers hashtag-
tweet reinforcement, but not the inter-hashtag competition.
Comparing HTR with LMPP helps us to understand the role
of hashtag competition in hashtag propagation.

3.5 Performance comparison (MAPE)

Table 2 presents a comparative sketch in terms of MAPE on
the 20% held-out set. We observe that for all datasets, LMPP
performs best by achieving lowest MAPE compared to all
other baselines. The performance of SpikeM and SEISMIC
are consistently poor in most of the cases. This is because,
SpikeM emphasizes on modeling realistic patterns from the
temporal data (e.g., periodicity). However, the temporal pat-
terns in training-set often do not match with that in the test-
set. The performance of SEISMIC is better than SpikeM in
most of the datasets. In contrast to SpikeM, SEISMIC does
not rely on a fixed set of temporal patterns present in the data.
Rather, a point-process based formulation helps it to properly
capture the stochastic dynamics of the (re)tweet posts.
We find the performance of RPP and Hawkes to be better than
SEISMIC and SpikeM. RPP attempts to capture intrinsic at-
tractiveness of a tweet, and the aging of different posts. There
are mainly two distinctive features that help Hawkes to ob-
tain a significant performance-boost. First, Hawkes models
the temporal effect of each and every post rather than their
simple collective effect, which is very well suited to capture
the bursty nature of the tweets. Second, the underlying learn-
ing problem is convex for this approach. As a result, one can
accurately estimate the parameters, making it a robustly iden-
tifiable learning model. However, both RPP and Hawkes are
designed to model the popularity dynamics of a single tweet.
So, they do not consider the reinforcement of a hashtag and
tweet chains. Moreover, ignoring inter-hashtag competition
further limits their predictive power.
We observe that HTR performs better than RPP and Hawkes
in four datasets. Since HTR only captures the hashtag-tweet



Avg. Precision Avg. Recall
Datasets LMPP HTR RPP Hawkes SEISMIC SpikeM LMPP HTR RPP Hawkes SEISMIC SpikeM
Oscars 0.74 0.54 0.32 0.38 0.31 0.33 0.75 0.45 0.32 0.37 0.33 0.34

MTV-Awards 0.31 0.30 0.30 0.31 0.31 0.30 0.33 0.32 0.33 0.33 0.30 0.32
Nepal-Earthquake 0.61 0.60 0.37 0.28 0.40 0.44 0.70 0.54 0.37 0.33 0.52 0.57

Dem-Primary 0.69 0.56 0.48 0.30 0.45 0.34 0.72 0.49 0.48 0.29 0.57 0.36
BBD 0.66 0.48 0.32 0.55 0.31 0.43 0.67 0.48 0.32 0.64 0.28 0.40
Copa 0.72 0.29 0.42 0.60 0.29 0.34 0.59 0.33 0.42 0.53 0.33 0.42

T20WC 1.0 0.32 0.64 0.10 0.29 0.65 0.67 0.32 0.64 0.10 0.21 0.54

Table 3: Average precision and recall in jump detection for all algorithms. Orange (blue) indicates best (second best) predictor. Numbers in
italics indicate the best predictor from four baselines.

reinforcement, it can reasonably record the effect of inher-
ent attractiveness of the hashtags on the tweets. However, it
does not incorporate hashtag competitions which in-turn con-
straints its performance.
The importance of hashtag competition is clearly reflected by
the best performance of LMPP which properly blends both
hashtag-tweet reinforcement and hashtag competition to ac-
curately model the popularity dynamics. In particular, for
four datasets viz. MTV-Awards, Nepal-Earthquake, Dem-
Primary and T20WC, the performance boost of LMPP is sub-
stantial compared to its immediate competitor. This is be-
cause, for each of these datasets, the rank diversity (Table 1,
last column) is very high. As a result, LMPP exploits this
signal to train the model better than others, which results in a
significant performance boost.
Analysis of forecasting capabilities with time: To have a
better understanding of the prediction performance of all the
models w.r.t. time, we further probed the timestamps in the
20% held-out test set and computed MAPE for each sample
point. Figure 1 (top row) shows the change of predictive-
performance of popularity with time (MAPE of sample points
aggregated over time). We observe that the forecasting per-
formance of LMPP is better than the other methods. As ex-
pected, as time progresses, the performance of all the ap-
proaches degrades - this rate is relatively much lower in
LMPP than all other methods.

3.6 Performance comparison (SRCC)
To evaluate the ability of the algorithms to detect variations
in the popularity ranking of the competing hashtags, we di-
vide the test time into several intervals of same duration. At
each of them, we obtain a ranked list of the participating hash-
tags, based on the predicted popularity using LMPP as well
as the baselines. On the other hand, from the original trace,
we derive the ground-truth of these ranked lists. To mea-
sure how closely a predicted order matches the actual one,
we compute Spearman’s rank correlation coefficient (SRCC)
between them. Table 2 and Figure 1 (bottom row) dissect a
comparative analysis in terms of SRCC for all the propos-
als. We observe that LMPP performs significantly better than
the baselines across all datasets. It is interesting to observe
that, in this case, HTR outperforms the baselines only for two
datasets. That is, here, HTR fares quite poorly as compared
to its performance in terms of MAPE. Since HTR neglects
the effect of hashtag competition, despite a strong forecast-
ing power, it cannot accurately predict the relative variation
of popularity among the competing hashtags. It is important
to note that the performance of other baselines are poor and

inconsistent across all the datasets. Although the baselines
are specifically designed for popularity prediction, they are
insensitive to ranking of hashtag popularity. That said, better
MAPE does not guarantee that the relative popularity order
will be maintained. This is because, MAPE counts absolute
error, but does not reflect a relative popularity variation.

3.7 Detection of sudden changes in ranking
Besides evaluating the accuracy of prediction of general rank
order, the efficacy of a system can be measured in terms of its
success in ‘catching’ the instances where a particular hashtag
suddenly becomes popular (or suddenly loses popularity). We
extracted such instances from the datasets (around 9% hash-
tags in the test-set), and checked how accurately the compet-
ing algorithms identify those instances. Table 3 reports the
average precision and recall of jump detection for algorithms
across all the datasets. In both precision and recall, LMPP
significantly outperforms the other algorithms. Considering
the hardness of the problem, we believe the performance of
LMPP (both precision and recall are around 70%) is excellent
by itself. The only exception being the MTV-Awards dataset,
where the reason for the less impressive performance is that
the absolute numbers of tweet-chains produced by different
ranked hashtags are very close. Note that although in terms
of SRCC, the gains of LMPP were modest over baselines,
LMPP can correctly predict the abrupt changes much better.
The problem with other baselines is not only their inferior
performance but also their inconsistency, which results in no
clear second ranker across datasets.

4 Conclusion
In this paper, we propose LMPP, a novel point process driven
framework that unifies several realistic factors to model hash-
tag popularity such as hashtag-tweet reinforcement and inter-
hashtag competitions. Such a unified approach does not only
efficiently estimate hashtag popularity for which it is de-
signed, but also gives an accurately prediction of the rela-
tive ranking of concurrent and competing hashtags. Extensive
experiments over seven real-world datasets show that LMPP
significantly outperforms state-of-the-art baselines in popu-
larity prediction, additionally offering the accurate prediction
of ranking and sudden change in popularity of the hashtags.
Acknowledgments: A. De and A. Chakraborty were sup-
ported by Google India PhD Fellowship. A. Chakraborty
was also supported by Prime Minister’s Fellowship Scheme
for Doctoral Research, a public-private partnership between
SERB, Department of Science & Technology, Government
of India and Confederation of Indian Industry (CII).



References
[Bao et al., 2015] Peng Bao, Hua-Wei Shen, Xiaolong Jin, and

Xue-Qi Cheng. Modeling and predicting popularity dynamics of
microblogs using self-excited hawkes processes. In WWW, 2015.

[Bi and Cho, 2016] Bin Bi and Junghoo Cho. Modeling a retweet
network via an adaptive bayesian approach. In WWW, 2016.

[Blundell et al., 2012] C. Blundell, J. Beck, and K. A. Heller. Mod-
elling reciprocating relationships with hawkes processes. In
NIPS, 2012.

[Bourigault et al., 2014] Simon Bourigault, Cedric Lagnier, Syl-
vain Lamprier, Ludovic Denoyer, and Patrick Gallinari. Learning
social network embeddings for predicting information diffusion.
In WSDM, 2014.

[Chakraborty et al., 2016] Abhijnan Chakraborty, Bhargavi Paran-
jape, Sourya Kakarla, and Niloy Ganguly. Stop clickbait: Detect-
ing and preventing clickbaits in online news media. In ASONAM,
2016.

[Chakraborty et al., 2017] Abhijnan Chakraborty, Johnnatan Mes-
sias, Fabricio Benevenuto, Saptarshi Ghosh, Niloy Ganguly, and
Krishna P Gummadi. Who makes trends? understanding de-
mographic biases in crowdsourced recommendations. In AAAI
ICWSM, 2017.

[Cheng et al., 2016] Justin Cheng, Lada A Adamic, Jon Kleinberg,
and Jure Leskovec. Do cascades recur? In WWW, 2016.

[De et al., 2013] Abir De, Niloy Ganguly, and Soumen
Chakrabarti. Discriminative link prediction using local
links, node features and community structure. In Data Mining
(ICDM), 2013 IEEE 13th International Conference on, pages
1009–1018. IEEE, 2013.

[De et al., 2014] Abir De, Sourangshu Bhattacharya, Parantapa
Bhattacharya, Niloy Ganguly, and Soumen Chakrabarti. Learn-
ing a linear influence model from transient opinion dynamics. In
ACM CIKM, 2014.

[De et al., 2016a] Abir De, Sourangshu Bhattacharya, Sourav
Sarkar, Niloy Ganguly, and Soumen Chakrabarti. Discrimina-
tive link prediction using local, community, and global signals.
TKDE, 2016.

[De et al., 2016b] Abir De, Isabel Valera, Niloy Ganguly, Sourang-
shu Bhattacharya, and Manuel Gomez Rodriguez. Learning and
forecasting opinion dynamics in social networks. In NIPS, 2016.

[Farajtabar et al., 2014] M. Farajtabar, N. Du, M. Gomez-
Rodriguez, I. Valera, L. Song, and H. Zha. Shaping social
activity by incentivizing users. In NIPS, 2014.

[Farajtabar et al., 2015] M. Farajtabar, Y. Wang, M. Gomez-
Rodriguez, S. Li, H. Zha, and L. Song. Coevolve: A joint
point process model for information diffusion and network co-
evolution. In NIPS, 2015.

[Ferraz Costa et al., 2015] Alceu Ferraz Costa, Yuto Yamaguchi,
Agma Juci Machado Traina, Caetano Traina Jr, and Christos
Faloutsos. Rsc: Mining and modeling temporal activity in so-
cial media. In KDD, 2015.

[Gao et al., 2016] Jinhua Gao, Huawei Shen, Shenghua Liu, and
Xueqi Cheng. Modeling and predicting retweeting dynamics via
a mixture process. In WWW, 2016.

[Gomez-Rodriguez et al., 2011] M. Gomez-Rodriguez, D. Bal-
duzzi, and B. Schölkopf. Uncovering the Temporal Dynamics
of Diffusion Networks. In ICML, 2011.

[Hua-Wei et al., 2014] Shen Hua-Wei, Dashun Wang, Chaoming
Song, and Albert Barabasi. Modeling and predicting popularity
dynamics via reinforced poisson processes. In AAAI, 2014.

[Iwata et al., 2013] T. Iwata, A. Shah, and Z. Ghahramani. Discov-
ering latent influence in online social activities via shared cascade
poisson processes. In KDD, 2013.

[Kobayashi and Lambiotte, 2016] Ryota Kobayashi and Renaud
Lambiotte. Tideh: Time-dependent hawkes process for predict-
ing retweet dynamics. In AAAI, 2016.

[Kupavskii et al., 2012] Andrey Kupavskii, Liudmila Ostroumova,
Alexey Umnov, Svyatoslav Usachev, Pavel Serdyukov, Gleb Gu-
sev, and Andrey Kustarev. Prediction of retweet cascade size over
time. In CIKM, 2012.

[Liniger, 2009] T.J. Liniger. Multivariate Hawkes Processes. PhD
thesis, 2009.

[Mathioudakis and Koudas, 2010] Michael Mathioudakis and Nick
Koudas. Twittermonitor: trend detection over the twitter stream.
In ACM SIGMOD, 2010.

[Matsubara et al., 2015] Yasuko Matsubara, Yasushi Sakurai,
B. Aditya Prakash, Lei Li, and Christos Faloutsos. Rise and fall
patterns of information diffusion: model and implications. In
WWW, 2015.

[Myers and Leskovec, 2012] Seth A Myers and Jure Leskovec.
Clash of the contagions: Cooperation and competition in infor-
mation diffusion. In ICDM, 2012.

[Rosenfeld et al., 2016] Nir Rosenfeld, Mor Nitzan, and Amir
Globerson. Discriminative learning of infection models. In
WSDM, 2016.

[Samanta et al., 2017] Bidisha Samanta, Abir De, and Niloy Gan-
guly. Strm: A sister tweet reinforcement process for modeling
hashtag popularity. In IEEE INFOCOM, 2017.

[Shi et al., 2016] Bichen Shi, Georgiana Ifrim, and Neil Hurley.
Learning-to-rank for real-time high-precision hashtag recom-
mendation for streaming news. In WWW, 2016.

[Shuai and Jun, 2015] Gao Shuai and Chen Jun, Ma Zhumin. Mod-
eling and predicting retweeting dynamics on microblogging plat-
forms. In WSDM, 2015.

[Sikdar et al., 2016] Sandipan Sikdar, Anshit Chaudhary, Shraman
Kumar, Niloy Ganguly, Abhijnan Chakraborty, Gaurav Kumar,
Abhijeet Patil, and Animesh Mukherjee. Identifying and char-
acterizing sleeping beauties on youtube. In CSCW Companion,
2016.

[Valera and Gomez-Rodriguez, 2015] Isabel Valera and Manuel
Gomez-Rodriguez. Modeling adoption and usage of competing
products. In ICDM, 2015.

[Weston, 2014] Jason Weston. Support vector machine. 2014.
[Yang and Leskovec, 2011] Jaewon Yang and Jure Leskovec. Pat-

terns of temporal variation in online media. In WSDM, 2011.
[Zhao et al., 2015] Qingyuan Zhao, Murat A. Erdogdu, Hera Y. He,

Anand Rajaraman, and Jure Leskovec. Seismic: A self-exciting
point process model for predicting tweet popularity. In KDD,
2015.

[Zhou et al., 2013] Ke Zhou, Hongyuan Zha, and Le Song. Learn-
ing triggering kernels for multi-dimensional hawkes processes.
In ICML, 2013.


