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Abstract—A link prediction (LP) algorithm is given a graph,
and has to rank, for each node, other nodes that are candidates
for new linkage. LP is strongly motivated by social search
and recommendation applications. LP techniques often focus
on global properties (graph conductance, hitting or commute
times, Katz score) or local properties (Adamic-Adar and many
variations, or node feature vectors), but rarely combine these
signals. Furthermore, neither of these extremes exploit link
densities at the intermediate level of communities. In this paper
we describe a discriminative LP algorithm that exploits two
new signals. First, a co-clustering algorithm provides community
level link density estimates, which are used to qualify observed
links with a surprise value. Second, links in the immediate
neighborhood of the link to be predicted are not interpreted at
face value, but through a local model of node feature similarities.
These signals are combined into a discriminative link predictor.
We evaluate the new predictor using five diverse data sets
that are standard in the literature. We report on significant
accuracy boosts compared to standard LP methods (including
Adamic-Adar and random walk). Apart from the new predictor,
another contribution is a rigorous protocol for benchmarking and
reporting LP algorithms, which reveals the regions of strengths
and weaknesses of all the predictors studied here, and establishes
the new proposal as the most robust.

1. INTRODUCTION

The link prediction (LP) problem [16] is to predict future
relationships from a given snapshot of a social network. E.g.,
one may wish to predict that a user will like a movie or book,
or that two researchers will coauthor a paper, a user will en-
dorse another on LinkedIn, or two users will become “friends”
on Facebook. Apart from the obvious recommendation motive,
LP can be useful in social search, such as Facebook Graph
Search1, as well as ranking goods or services based on not
only real friends’ recommendations but also that of imputed
social links.

Driven by these strong motivations, LP has been intensively
researched in recent years; Lu and Zhou [19] provide a
comprehensive survey. As we shall describe in Section 2, in
trying to predict if nodes u, v in a social network are likely to
be(come) related, LP approaches predominantly exploit three
kinds of signals:
• When nodes have associated feature vectors (user demog-

raphy, movie genre), node-to-node similarity may help
predict linkage.

• Local linkage information, such as the existence of many
common neighbors, may hint at linkage. The well-known
Adamic-Adar (AA) [1] predictor and variants use such
information.

1https://www.facebook.com/about/graphsearch

• Non-local effects of links, such as effective conductance,
hitting time, commute time [7], or their heuristic approxi-
mations are often used as predictors. The Katz score [12]
is a prominent example. The random walk paradigm has
also been combined [2] with edge features for enhanced
accuracy.

Recently, stochastic block models [8], factor models and
low-rank matrix factorization [15] have been used to “explain”
a dyadic relation using a frugal generative model. These have
rich connections to coding and compression. Co-clustering [6]
and cross-association [4] are related approaches. Co-clustering
exposes rich block structure in a dyadic2 relation. E.g., in a
user-movie matrix, it can reveal that some users like a wide
variety of movies whereas others are more picky, or that some
classic movies are liked by all clusters of people.

Although co-clustering provides a regional community den-
sity signal, it is derived of global linkage considerations, and
is arguably more meaningful than global, unbounded random
walks. However, exploiting the signal from co-clustering is
non-obvious. The generative model implicit in co-clustering
is that edges in each dyadic block are sampled iid from a
Bernoulli distribution with a parameter corresponding to the
empirical edge density in the block. While the choices of
blocks and their edge densities offer optimal global compres-
sion, they cannot predict presence or absence of individual
links without incorporating node features and local linkage
information.

Our key contribution (Section 4) is a new two-level learning
algorithm for LP. At the lower level, we learn a local model
for similarity of nodes across edges (and non-edges). This is
combined, using a support vector machine, with an entirely
new non-local signal: the output of co-clustering [6], suitably
tuned into feature values.

To the best of our knowledge, this is the first work that
brings all three sources of information (node features, imme-
diate neighborhood, “regional” community structure) together
in a principled way. Another contribution (Section 3) is a
rigorous evaluation protocol for LP algorithms, using a new
binning strategy for nodes based on their local link structure.
The new protocol reveals the strengths and weaknesses of LP
algorithms across a range of operating conditions.

On five diverse and public data sets (NetFlix, MovieLens,
CiteSeer, Cora, WebKb) that are standard in the LP commu-
nity, our algorithm offers (Section 5) substantial accuracy gains
beyond strong baselines. Our main experimental observations

2Can be extended to larger arity.
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are:
• The local similarity model on edges beats baselines in

some regions of the problem space, but is not overall
significantly better.

• The additional signal from communities, found through
co-clustering, is strong and helpful.

• A global discriminative learning technique using the
above signals convincingly beats baselines.

2. RELATED WORK

LP has been studied in different guises for many years, and
formalized, e.g., by Liben-Nowell and Kleinberg [16]. Lu and
Zhou [19] have written a comprehensive survey.

2.1. Local similarity
If each node u is associated with a feature vector θu, these

can be used to define edge feature vectors f(u, v) = f(θu, θv),
which can then be involved in an edge prediction through
logistic regression (i.e., Pr(edge|u, v) = 1

1+e−ν·f(u,v)
), or a

SVM (predict an edge if ν ·f(u, v) > 0). Obviously, this class
of models miss existing neighborhood information.

To decide if nodes u and v may get linked, one strong
signal is the number of common neighbors they already
share. Adamic and Adar (AA) [1] refined this by a weighted
counting: common neighbors who have many other neighbors
are dialed down in importance:

simAA
i,j =

∑
k∈Γ(i)∩Γ(j)

1

log d(k)
, (1)

where d(k) is the degree of common neighbor k.
The resource allocation (RA) predictor is a slight variation

which replaces log d(k) with d(k) in (1). The AA and RA
predictors both penalize the contribution of high-degree com-
mon neighbors. The difference between them is insignificant if
d(k) is small. However they differ for large d(k). RA punishes
the high-degree common neighbors more heavily than AA.
Among ten local similarity measures, Lu and Zhou found [19,
Table 1, page 9] RA to be the most competitive, and AA was
close.

2.2. Random walks and conductance
AA, RA, etc. are specific examples of three general prin-

ciples that determine large graph proximity between nodes u
and v:
• Short path(s) from u to v.
• Many parallel paths from u to v.
• Few distractions (high degree nodes) on the path(s).

Elegant formal definitions of proximity, that capture all of the
above, can be defined by modeling the graph (V,E) (|V | =
N, |E| = M ) as a resistive network and measuring effective
conductance, or equivalently [7], modeling random walks [14],
[22], [21] on the graph and measuring properties of the walk.
Many link predictors are based on such proximity estimates.
The earliest, from 1953 [12], defines

simKatz(u, v) = βAuv + β2(A2)uv + · · · = (I− βA)−1 − I,
(2)

where A is the (symmetric) adjacency matrix and β < 1/λ1,
the reciprocal of the largest eigenvalue of A. This is effectively
a length-weighted count of the number of paths between u and
v. Lu and Zhou [19] describe several other related variants. In
their experiments, the best-performing definition were local
[22] and cumulative (called “superposed” by Lu and Zhou)
random walks (LRW and CRW), described next.

Suppose qu is the steady state visit probability of node
u (degree divided by twice the number of edges in case of
undirected graphs). Let πu(0) be the impulse distribution at
u, i.e., πu(0)[u] = 1 and πu(0)[v] = 0 for v 6= u. Define
φu(t+ 1) = C>πu(t), where C is the N ×N row-stochastic
edge conductance (or transition probability) matrix. Then

simLRW
uv (t) = quπu(t)[v] + qvπv(t)[u]. (3)

For large t, the two rhs terms become equal, and LRW
similarity is simply twice the “flow” of random surfers on
the edge {u, v}. Lu and Zhou claimed [19, Table 3, page 16]
that LRW is competitive, but the following cumulative random
walk (CRW) is sometimes more accurate.

simCRW
u,v (t) =

t∑
τ=1

simLRW
u,v (τ). (4)

CRW does not converge with increasing t, so t is chosen by
validation against held-out data.

Although some of these approaches may feel ad-hoc, they
work well in practice; Sarkar et al. [20] have given theoretical
justification as to why this may be the case.

2.3. Probabilistic generative models
One of the two recent approaches that blend node features

with linkage information is by Ho et al. [8], although it is
pitched not as a link predictor, but as an algorithm to cluster
hyperlinked documents into a Wikipedia-like hierarchy. (Doc-
uments directly correspond to social network nodes with local
features.) The output is a tree of latent topic nodes, with each
document associated with a leaf topic. The algorithm seeks
to cluster similar documents into the same or nearby topic
nodes, and reward topic trees with dense linkages between
documents belonging to small topic subtrees rather than span
across far-away topic nodes. The model associates a parameter
φ(t) ∈ (0, 1) with each topic node t. If documents u, v are
attached to topic nodes t(u), t(v), then the probability of a
link between u, v is estimated as φ(LCA(t(u), t(v))), where
LCA is least common ancestor. These probabilities can then
be used to rank proposed links.

2.4. Supervised random walk (SRW)
The other approach to blend node features with graph

structure is supervised and discriminative [2], and based on
personalized PageRank [10]. Recall that f(u, v) is an edge
feature vector. The raw edge weight is defined as a(u, v) =
a(w · f(u, v)) for a suitable monotone function a(·) > 0. The
probability of a random surfer walking from u to v is set to

Pr(u→ v)
def
= C(u→ v) = C[v, u] =

a(u, v)∑
v′ a(u, v′)

.
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where C ∈ RN×N is called the edge conductance matrix. If
we are trying to predict out-neighbors of source node s, we
set up a teleport vector rs defined as rs[u] = 1 if u = s and 0
otherwise, then find the personalized PageRank vector PPVs,
defined by the recurrence

PPVs = αC PPVs +(1− α)rs.

During training, for source node s, we are given some actual
neighbors g and non-neighbors b, and we want to fit w so that
PPVs[g] > PPVs[b].

SRW is elegant in how it fits together edge features with
visible graph structure, but the latter is exploited in much the
same way as Katz or LRW. Specifically, it does not receive as
input regional graph community information. Thus, SRW and
our proposal exploit different sources of information. Unifying
SRW with our proposal is left for future work.

2.5. Unsupervised random walk
Before SRW, Lichtenwalter et al. [17] introduced an unsu-

pervised prediction method, PropFlow, which corresponds to
the probability that a restricted random walk starting at vi ends
at vj in some pre-specified l steps or fewer using link weights
as transition probabilities. The restrictions are that the walk
terminates upon reaching vj or upon revisiting any other node.
This produces a score sij which is used to predict new links.
PropFlow is somewhat similar to rooted PageRank, but it is a
more localized measure of propagation, and is insensitive to
topological noise far from the source node. The salient features
are: 1. the walk length is limited by l which is very small (4–5),
so PropFlow is much faster than SRW, and 2. unlike PageRank,
it does not need restarts and convergence but simply employs
a modified breadth search method.

2.6. Co-clustering
Similar documents share similar terms, and vice versa.

In general, clustering one dimension of a dyadic relation
(represented as a binary matrix A, say) is synergistic with
clustering the other. Dhillion et al. [6] proposed the first
information-theoretic approach to group the rows and columns
of A into separate row and column groups (also called blocks,
assuming rows and columns of A have been suitably permuted
to make groups occupy contiguous rows and columns) so as
to best compress A using one link density parameter per (row
group, column group) pair.

As we shall see, co-clustering and the group link densities
can provide information of tremendous value to link prediction
algorithms, of a form not available to AA, RA, LRW or CRW.
In recommending movies to people, for instance, there are
clusters of people that like most movies, and there are clusters
of classic movies that most people like. Then there are other
richer variations in block densities. Given a query edge in the
LP setting, it seems natural to inform the LP algorithm with
the density of the block containing the query edge.

However, the estimated block density is the result of a
global optimization, and cannot directly predict one link.
That requires combining the block density prior with local
information (reviewed above). That is the subject of Section 4.

3. EVALUATION PROTOCOL

As described informally in Section 4.1, a LP algorithm
applied to a graph snapshot is successful to the extent that in
future, users accept high-ranking proposed links. In practice,
this abstract view quickly gets murky, especially for graphs
without edge creation timestamps, but also for those with
timestamps. In this section we discuss the important issues
guiding our evaluation protocol and measurements.

3.1. Labeling vs. ranking accuracy

Regarding the LP algorithm’s output as a binary prediction
(edge present/absent) for each node pair, comparing with the
true state of the edge, and counting up the fraction of correct
decisions, is a bad idea, because of extreme skew in typical
sparse social graphs: most potential edges are absent. The
situation is similar to ranking in information retrieval (IR)
[18], where, for each query, there are many fewer relevant
documents than irrelevant ones. In LP, a separate ranking is
produced for each node q from a set of nodes Q, which are
therefore called query nodes.

Fix a q and consider the ranking of the other N − 1
nodes. Some of these are indeed neighbors (or will end up
becoming neighbors). Henceforth, we will call q’s neighbors
as good nodes G(q) and non-neighbors as bad nodes B(q).
Ideally, each good node should rank ahead of all bad nodes.
Because the LP algorithm is generally imperfect, there will be
exceptions. The area under the ROC curve (AUC) is widely
used in data mining as a accuracy measure somewhat immune
to class imbalance. It is closely related to the fraction of the
|G(q)| |B(q)| good-bad pairs that are in the correct order in
LP’s ranking. However, for the same reasons as in IR ranking
[18], AUC tends to be large and undiscerning for almost any
reasonable LP algorithm. Therefore, we adapt standard ranking
measure mean average precision (MAP).

At each node, given a score from the LP algorithm on all
other nodes as potential neighbors, and the “secret” knowledge
of who is or isn’t a neighbor, we compute the following
performance metrics.

3.1.1. Precision and recall: These are defined as

Precision(k) =
1

|Q|
∑
q∈Q

Pq(k) (5)

and Recall(k) =
1

|Q|
Σq∈QRq(k), (6)

where |Q| is the number of queries, Pq(k) is Precision@k for
query q, and Rq(k) is Recall@k for query q. So Precision(k)
is the average of all Precision@k values over the set of queries,
and likewise with Recall(k).

3.1.2. Mean average precision (MAP): First we define at
query node q the quantity

AvP (q) =
1

L

N−1∑
k=1

Pq(k) rq(k) (7)

at each node, where N − 1 is the number of nodes excluding
the query node itself, L is the number of retrieved relevant
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items and ri(k) is an indicator taking value 1 if the item at
rank k is a relevant item (actual neighbor) or zero otherwise
(non-neighbor). Averaging further over query nodes, we obtain
MAP = 1

|Q|
∑
q AvP (q).

In the remainder of this section, we explore these important
issues:
• How should Q be sampled from V ? A related question

is, how to present precision, recall, MAP, etc., with
Q suitably disaggregated to understand how different
LP algorithms behave on different nodes q ∈ Q? (See
Section 3.2.)

• Many graphs do not have link timestamps. For these, once
Q is set, how should we sample edges incident on Q for
training and testing? (See Section 3.3.)

3.2. Query node sampling protocols

In principle, the ranking prowess of an LP algorithm should
be evaluated at every node. E.g., Facebook may recommend
friends to all users, and there is potential satisfaction and
payoff from every user. In practice, such exhaustive evaluation
is intractable. Therefore, nodes are sampled; usually |Q| � N .
On what basis should query nodes be sampled? In the absence
of the social network counterpart to a commercial search
engine’s query log, there is no single or simple answer to
this question. LP algorithms often target predicting links that
close triangles if/when they appear. 92% of all edges created
on Facebook Iceland close a path of length two, i.e., a triangle
[2]. These nodes are sampled as query nodes Q.

Besides providing comparison of overall performance aver-
aged over query nodes, in order to gain insight into the dy-
namics of different LP algorithms, we need to probe deeper in
the structure of the network and check the strength/weakness
of the algorithm vis-a-vis various structures. In our work, we
bucket the selected query nodes based on
• the number of neighbors,
• the number of triangles on which they are incident.

3.3. Edge sampling protocol

If edges in the input graph have creation timestamps, we
can present a snapshot to the LP algorithm and simulate
further passage of time to accrue its rewards. Even this happier
situation raises many troublesome questions, such as when the
snapshot it taken, the horizon for collecting rewards, etc., apart
from (the composition of) the query node sample.

To complicate matters further, many popular data sets (some
used in Section 5) do not have edge timestamps. One extreme
way to dodge this problem is the leave-one-out protocol:
remove exactly one edge at a time, train the LP algorithm, and
make it score that edge. But this is prohibitively expensive.

Rather than directly sample edges, we first sample query
nodes Q as mentioned in Section 3.2. This narrows our atten-
tion to |Q|(N−1) potential edge slots incident on query nodes.
Fix query q. In the fully-disclosed graph, V \ q is partitioned
into “good” neighbors G(q) and “bad” non-neighbors B(q).
We set a train sampling fraction σ ∈ (0, 1). We sample
dσ|G(q)|e good and dσ|B(q)|e bad nodes and present the

resulting training graph to the LP algorithm. (σ is typically
0.8 to 0.9, to avoid modifying the density and connectivity of
the graph drastically and misleading LP algorithms.)

The good and bad training samples are now used to build
our models as described in Section 4. The training graph, with
the testing good neighbors removed, is used for co-clustering.
This prevents information leakage from the training set. The
remaining good neighbors and bad non-neighbors are used for
testing. In case |G(q)| = dσ|G(q)|e or |B(q)| = dσ|B(q)|e,
we discard q, introducing a small bias after our sampling of
Q. Effectively this is a “sufficient degree” bias, which is also
found in prior art [2, Section 4: K,∆].

4. PROPOSED FRAMEWORK: CCLL

We have reviewed in Section 2 several LP approaches. Some
(AA, RA, CRW) involve no learning, others [8] propose gener-
ative probabilistic models that best “explain” the current graph
snapshot (and then the model parameters of the “explanation”
can be used to predict future links, although they did not study
this application). In recent years, direct prediction of hidden
variables through conditional probability [13] or discriminative
[23] models have proved generally superior to modeling the
joint distribution of observed and hidden variables [24]. As
we shall see in Section 5, this is confirmed even among our
comparisons of prior work, where supervised random walk
[2] is superior to unsupervised approaches. However before
explaining our scheme we clearly define the link prediction
problem.

4.1. Problem definition

We are given a snapshot of a social network, represented
as a graph (V,E) with |V | = N and |E| = M . Let u ∈ V
be a node (say representing a person). Edges may represent
“friendship”, as in Facebook. Depending on the application
or algorithm, the graph may be directed or undirected. The
goal of LP is to recommend new friends to u, specifically, to
rank all other nodes v ∈ V \ u in order of likely friendship
preference for u. One ranking device is to associate a score
with each v, and sort them by decreasing score. LP algorithms
vary in how they assign this score. We can also think about
LP as associating a binary hidden variable with the potential
edge (u, v), then estimating the probability that this variable
has value 1 (or true), based on observations about the currently
revealed graph. The LP algorithm is considered high quality
if the user accepts many proposed friends near the top of the
ranked list. In case of large V , LP systems often restrict the
potential set of vs to ones that have a common neighbor c,
i.e., (u, c) and (c, v) already exist in E.

4.2. Overview of two-level discriminative framework

LP can also be regarded as a classification problem: given
a pair of nodes u, v, we have two class labels (“link” vs. “no
link”) and the task is to predict the correct label. To estimate a
confidence in the (non) existence of a link, we will aggregate
several kinds of input signals, described throughout the rest
of this section. Apart from subsuming existing signals from
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one or more of AA, RA, and CRW, we will harness two
new signals. First, in Section 4.3, we will describe a local
learning process to determine effective similarity between two
given nodes. Unlike AA and other node-pair signals, our new
approach recognizes that propensity of linkage is not purely
a function of node similarity; it changes with neighborhood.
Second, in Section 4.4 we describe how to harness the output
of a co-clustering of the graph’s adjacency matrix to derive
yet more features. To our knowledge coclustering has never
been used in this manner for LP.

For each proposed node pair u, v, these signals will be
packed as features into a feature vector f(u, v) ∈ Rd for some
suitable number of features d. We estimate a global model
ν ∈ Rd, such that the confidence in the existence of edge
(u, v) is directly related to ν · f(u, v). f(u, v) will consist of
several blocks or sub-vectors, each with one or more elements.
• f(u, v)[AA] is the block derived from the Adamic-Adar

(AA) score (1). (We can also include other local scores
in this block.)

• f(u, v)[LL] is the block derived from local similarity
learning (Section 4.3).

• f(u, v)[CC] is the block derived from co-clustering (Sec-
tion 4.4).

As we shall demonstrate in Section 5, these signals exploit
different and complementary properties of the network. If
y(u, v) ∈ {0, 1} is the observed status of a training edge,
we can find the weights (ν) using a SVM and its possible
variations. The details will be discussed in Section 4.5.

To exploit possible interaction between features, we can
construct suitable kernels [3]. Given we have very few fea-
tures, a quadratic (polynomial) kernel can be implemented by
explicitly including all quadratic terms. I.e., we construct a
new feature vector whose elements are
• f(u, v)[i] for all indices i, and
• f(u, v)[i] f(u, v)[j] (ordinary scalar product) for all index

pairs i, j.
We can also choose an arbitrary informative subset of these.
We will now describe the three blocks of features.

4.3. Learning local similarity

An absolute notion of similarity between u and v, based on
node features θu, θv , is not strongly predictive of linkage; it
also depends on the typical distribution of similarity values in
the neighborhood [5]. Also, the presence or absence of edge
(u, v) rarely determined by nodes far from u and v. Keeping
these in mind, the first step of the algorithm learns the typical
(dis)similarity between u and v and their common neighbors.
We term this the reference dissimilarity. We then use this to
predict the chance of link (u, v) arriving.

Let Γ(u) be the (immediate) neighbors of u. We will model
the edge dissimilarity between u and v as

∆w(u, v) = wuv · |θu − θv|, (8)

where θu is a node feature vector associated with u, and
| · · · | denotes the elementwise absolute value of a vector, e.g.,

|(−2, 3)| = (2, 3), although other general combinations of θu
and θv are also possible [2]. wuv is the weight vector fitted
locally for u, v. (Contrast this with the global ν above, and
the final proposal in SRW [2] that fits a single model over all
node pairs.)

4.3.1. Finding wuv and reference dissimilarity: Throughout
this work, and consistent with much LP work, we assume that
edges are associative or unipolar, i.e., there are no “dislike” or
antagonistic links. Similar to AA and friends, when discussing
node pair u, v, we restrict our discussion to the vicinity N =
Γ(u) ∪ Γ(v).

For A ⊆ V \ u, A 6= ∅, we extend definition (8) to the set
dissimilarity

∆w(u,A) =
1

|A|
∑
v∈A

∆w(u, v). (9)

We define ∆w(u,∅) = 0. ∆w(u,A) is the average dissim-
ilarity between u and A. Note that ∆w(u, {v}) is simply
∆w(u, v).

The key idea here is that, if there is an edge (u, v), we want
to choose wu,v such that ∆w(u, v) is low, relative to node pairs
that are not neighbors. Conversely, if (u, v) is not an edge, we
want the dissimilarity to be large relative to nearby node pairs
that are neighbors. We codify this through the following four
constraints:

∆w(u,Γ(u) \ Γ(v)) ≤ α∆w(u, v)

∆w(v,Γ(v) \ Γ(u)) ≤ α∆w(u, v) (10)
∆w(u,Γ(v) \ Γ(u)) ≥ β∆w(u, v)

∆w(v,Γ(u) \ Γ(v)) ≥ β∆w(u, v)

Figure 1 illustrates the constraints. Here α, β are suitable mul-
tiplicative margin parameters. Smaller (larger) value of α (β)
allows a lower (higher) dissimilarity between the connected
(disconnected) nodes. Here, we have experimentally selected
α and β.

u v?

5

6
1

2 3 u v

5

6
1

2 3

u v

5

6
1

2 3 u v

5

6
1

2 3

Figure 1. Local dissimilarity constraints.

Subject to the above constraints (10), we wish to choose w
so as to minimize ∆w(u, v). This is a standard linear program,
which, given the typically modest size of Γ(u) ∪ Γ(v), runs
quite fast.
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4.3.2. Computation of LL features: The linear program
outputs w∗uv , from which we can compute

δuv = w∗uv · |θu − θv|. (11)

But is δuv larger than “expected”, or smaller? Plugging in the
raw value of δuv into our outer classifier may make it difficult
to learn a consistent model ν globally across the graph.
Therefore, we also compute the triangulated dissimilarity
between u and v, using common neighbors i, as

∆̄w∗(u, v) =
∑

i∈Γ(u)∩Γ(v)

∆w∗(i, u) + ∆w∗(i, v)

|Γ(u) ∩ Γ(v)|
(12)

= ∆w∗(u,Γ(u) ∩ Γ(v)) + ∆w∗(v,Γ(u) ∩ Γ(v)).

Finally, we return

f(u, v)[LL] = ∆̄w∗(u, v)− δuv. (13)

If f(u, v)[LL] is large and positive, it expresses confidence
that link (u, v) will appear; if it is large and negative, it
expresses confidence that it will not. Around zero, the LL
feature is non-committal; other features may then come to the
rescue.

4.4. Co-clustering and “surprise”

Given a dyadic relation represented as a matrix, co-clus-
tering [6] partitions rows and columns into row groups and
column groups. We can think of the rows and columns of the
input matrix being reordered so that groups are contiguous.
The intersection of a row group and column group is called
a block. The goal of co-clustering is to choose groups so that
the blocks are homogeneous, i.e., edges within a block appear
uniformly dense, with no finer structure (stripes) based on rows
or columns. Co-clustering uses a data compression formalism
to determine the optimal grouping.

Consider a query node pair u, v where we are trying to
predict whether edge (u, v) exists. E.g., u may be a person,
v may be a movie, and we want to predict if u will enjoy
watching v. In this person-likes-movie matrix, as a specific
example, there may be row groups representing clusters of
people that like most movies, and there may be column groups
representing clusters of classic movies that most people like.
In general, the block in which the matrix element [u, v] is
embedded, and in particular, its edge density d(u, v), gives a
strong prior belief about the existence (or otherwise) of edge
(u, v), and could be the feature f(u, v)[CC] in and of itself.

Although block density d(u, v) ∈ [0, 1], the penalty for
deviating from it in the ultimate link decision is not symmetric
(thanks again to graph sparsity). So a better formalism to
capture a coclustering-based feature is the “surprise value”
of an edge decision for node pair u, v. As an extreme case,
if a non-edge (value 0) is present in a co-cluster block where
all remaining elements are 1 (edges), it causes large surprise.
The same is the case in the opposite direction.

There are various ways of expressing this quantitatively.
One way of expressing it is that if an edge (u, v) is claimed to
exist, and belongs to a block with an edge density d(u, v), the

surprise is inversely related to d(u, v); in information theoretic
terms, the surprise is − log d(u, v) bits. (So if d(u, v) → 0,
yet the edge exists, the surprise goes to +∞.) Similarly, if the
edge does not exist, the surprise is to − log(1− d(u, v)) bits.

4.5. The discriminative learner for global model ν

In order to obtain the best LP accuracy, the above signals
need to be combined suitably. For each edge, there are
two classes (present/absent). One possibility is to label these
+1,−1, and fit the predictor ŷuv = sign(ν · f(u, v)).

4.5.1. Loss function: ν can be learnt to minimize various
loss functions. The simplest is 0/1 edge misclassification3 loss∑
q∈Q

1
N−1

∑
v 6=q~ŷqv 6= yqv�, which is usually replaced by

a convex upper bound, the hinge loss∑
q∈Q

1

|G(q) ∪B(q)|
∑

v∈G(q)∪B(q)

max {0, yqyν · f(u, v)− 1} . (14)

As we have discussed in Section 3.1, for ranking losses, it is
better to optimize the AUC, which is closely related [11] to
the pairwise loss∑
q∈Q

1

|G(q)| |B(q)|
∑

g∈G(q),b∈B(q)

~ν · f(q, b) ≥ ν · f(q, g)�, (15)

which is again usually approximated by the hinge loss∑
q∈Q

1
|G(q)| |B(q)|

∑
g∈G(q),b∈B(q)

max
{

0, 1− ν · (f(q, g)−f(q, b))
}

(16)

Joachims [11] offers to directly optimize Λ for several ranking
objectives; we choose area under the ROC curve (AUC) for
training Λ, although we evaluate the resulting predictions using
MAP. During inference, given q, we find ν · f(q, v) for all
v 6= q and sort them by decreasing score.

4.5.2. Feature map: We now finish up the design of
f(u, v)[AA], f(u, v)[LL] and f(u, v)[CC]. The first two are
straight-forward, we simply use the single scalar (1) for
f(u, v)[AA], and f(u, v)[LL] is also a single scalar as defined
in (13). The f(u, v)[CC] case is slightly more involved, and
has two scalar elements, one for each surprise value:
• − log d(u, v) for the “link exists” case, and
• − log(1− d(u, v)) for the “edge does not exist” case.

Accordingly, ν will have two model weights for the CC block,
and these will be used to balance the surprise values from
training data. The soundness of the above scheme follows
from structured learning feature map conventions [11], [23].
We defer the elementary algebraic details to the full version
of this paper. Thus, f(u, v) has a total of four elements.

5. EXPERIMENTS

We compare CCLL against several strong baselines such
as Adamic-Adar (AA) [1], RA [19], Cumulative Random
Walk (CRW) [19], Supervised Random Walk (SRW) [2], and
Generative Model (GM) [8]. RA computes the score in a
similar manner like AA, and therefore gives almost same
performance. Therefore, we omit RA and only present those

3~B� is 1 if B is true, 0 otherwise.
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Dataset N E n(a) davg

Movielens 3952 5669 18 2.8689

CiteSeer 3312 4732 3703 2.7391

Cora 2708 5429 1433 3.89

WebKb 877 1608 1703 2.45

NetFlix 17770 20466 64 2.3034

Figure 2. Summary of the datasets, where N is the number of items, E
is the total number of links, n(a) is the number of features and davg is the
average degree.

for AA. Apart from using LL as features to CCLL, we run
LL independently as a baseline.

5.1. Datasets used

We used the following popular public data sets, also sum-
marized in Figure 2.
Movielens [26]: It has 6040 users and 3952 movies. Each

user has rated at least one movie. Each movie has features
which are a subset of a set of 18 nominal attributes (e.g.
animation, drama etc.). From the raw data we constructed
a “social network” between movies where two movies
have an edge if they have at least a certain number of
common viewers. By choosing the minimum number of
common viewers to be 100, we obtain a network with
3952 nodes and 5669 edges.

CiteSeer [25]: The CiteSeer dataset consists of 3312 scien-
tific publications and the citation network consists of
4732 links. Each publication is tagged with a set of
keywords. Total number of keywords is 3703.

Cora [25]: The Cora dataset consists of 2708 scientific pub-
lications and the citation network consists of 5429 links.
Here the total number of keywords is 1433.

WebKb [25]: The WebKb dataset consists of 877 scientific
publications and the citation network consists of 1608
links. Here the total number of keywords is 1703.

Netflix [9]: The Netflix dataset consists of 2649429 users and
17770 movies. Each user has rated at least one movie.
Each movie has 64 features obtained by SVD from many
factors. From the raw daya we constructed a “social
network” of movies where two movies have an edge if
they have at least a certain number of common viewers.
By choosing the minimum number of common viewers to
be 20, we obtain a network with 17770 nodes and 20466
edges.

5.2. Performance of CCLL compared to other algorithms

Figure 4 gives a comparative analysis of MAP (Mean
Average Precision) values for all datasets and algorithms, and
Figure 3 gives a more detailed view of precision vs. recall.
We observe that, for all datasets, the overall performance of
CCLL is substantially better than all other methods.

Performance of the probabilistic generative model is par-
ticularly poor. This was surprising to us, given stochastic

Dataset CCLL LL AA CRW GM SRW
Netflix 0.6017 0.4750 0.5381 0.5428 0.1268 0.4564
Movielens 0.8747 0.8133 0.5341 0.5784 0.20 0.8114
CiteSeer 0.7719 0.7393 0.6649 0.5309 0.1452 0.6281
Cora 0.7234 0.6805 0.6135 0.4726 0.0583 0.6274
WebKb 0.8583 0.7505 0.6035 0.5736 0.3360 0.6693

Figure 4. Mean average precision over all algorithms and datasets.

block models (SBMs) seem ideally suited for use in LP.
Closer scrutiny showed model sparsity as a likely culprit, at
least in case of Ho et al.’s formulation. They derive a tree-
structured hierarchical clustering of the social network nodes,
where the number of hierarchy nodes is much smaller than
N , the number of social network nodes. Their model assigns
a score to an edge (u, v) that depends on the hierarchy paths
to which u and v are assigned. Since the number of hierarchy
nodes is usually much smaller than the number of social
nodes, the score of neighbors of any nodes have a lot of ties,
which reduces ranking resolution. Therefore, MAP suffers. In
contrast, the coarse information from co-clustering (CC) is
only a feature into our top-level ranker.

AA, RA, CRW all produce comparable performance. All
these methods solely depend on link characteristics, for ex-
ample AA and RA depending on the number of triangles a
node is part of, hence they miss out the important node or
edge feature information. Regarding CRW, as t goes to ∞,
it doesn’t converge, and there is no consistent global t for
best MAP. SRW, which performs best among the baselines,
uses node and link features (PageRank) but not community
based (co-clustering) signal. Moreover, SRW learns only one
global weight vector, unlike wuv in LL, a signal readily picked
up by CCLL. We also found the inherent non-convexity of
SRW to produce suboptimal optimizations. LL is next to SRW
in all data sets except NetFlix. This is because the number
of features in Netflix is small and the values assumed by
each feature is very diverse, making the feature-based local
prediction strategy ineffective.

A possible explanation of the superior performance of
CCLL can be that the underlying predictive modules (LL,
AA, CC) perform well in complementary zones which CCLL
can aggregate effectively. In order to probe into this aspect
we make a detailed study of the performance of the various
algorithms with respect to various distribution of work load
(elaborated in Section 5.6).

5.3. Stability to Sampling

Among all methods, CCLL and SRW use machine learning.
Hence in order to train the model, we randomly select a certain
fraction of edges (say TS%) and the same fraction of non-
edges from the network. CRW is an unsupervised algorithm
but since it performs a global random walk it is affected by
the sampling, the performance deteriorating when many edges
are removed. Figure 5 shows the variation of performance with
training sets of different sizes. We conducted the experiment
with 80% and 90% training samples. When we decrease the
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Figure 3. Precision vs. recall curves for all data sets and algorithms.

Dataset TS (%) CCLL CRW SRW

Netflix 80 0.5263 0.4493 0.3849
90 0.6017 0.5428 0.5567

Movielens 80 0.8672 0.5018 0.7789
90 0.8740 0.5784 0.8114

Citeseer 80 0.7000 0.3295 0.5567
90 0.7719 0.5309 0.6281

Cora 80 0.6803 0.3400 0.5516
90 0.7203 0.4726 0.6274

WebKb 80 0.8309 0.3360 0.5931
90 0.8583 0.5736 0.6693

Figure 5. Variation of accuracy with different training set sizes.

sample size from 90% to 80%, the performance deteriorates
for all methods. But the deterioration is much smaller in CCLL
compared to CRW and SRW. This is because CCLL picks up
strong signals from the AA and LL features. AA and LL work
solely on local factors. Deletion of an additional 10% of edges
hardly affects AA or LL score.

5.4. Importance of various features

Figure 6 dissects the various features involved in CCLL,
fixing at 90% sampling rate henceforth. To understand the role
of different features (local link structure, global community
structure), we build our SVM model eliminating either LL or
CC and calculate the ranking accuracy (MAP). The results
show that the absence of each of the signals (LL and CC)
significantly deteriorates the performance. However, closer
scrutiny showed the interesting property that the deterioration
occurs in different zones, that is, it is almost always true that
the node whose MAP gets affected by elimination of LL does
not face such problem when CC is removed.

5.5. Effect of quadratic terms

The results presented so far used only linear features.
Figure 7 shows the results obtained with quadratic features
(Section 4.1), compared to linear features (90% sample). The
data sets are arranged in decreasing order of size. I.e., Netflix
has the largest number of nodes and WebKb the smallest. It
is seen that for larger data set the inclusion of quadratic terms

Dataset CCLL SVM(LL,AA) SVM(LL,CC)
Netflix 0.6017 0.5761 0.5478
Movielens 0.8740 0.8436 0.8483
Citeseer 0.7719 0.7467 0.7677
Cora 0.7203 0.7044 0.7139
WebKb 0.8583 0.8106 0.8470

Figure 6. Feature ablation study.

Dataset CCLL LL+AA+CC Improvement Factor
Netflix 0.6017 0.5755 1.045
Movielens 0.8740 0.8565 1.020
Citeseer 0.7719 0.7677 1.006
Cora 0.7203 0.7220 0.997
WebKb 0.8583 0.8524 1.006

Figure 7. Effect of including quadratic features.

boosts accuracy. The enhancement of performance indicates
the role played by possible interaction of the features. In other
words, we can conclude that not only local link structure,
attributes and community level signals have important roles
here, but also they interact or affect each other which also
play a crucial role in link prediction. The interaction can be
exploited better in a more complex model if there is more
training data.

5.6. Workload Distribution

In this section, we present some comparative analysis be-
tween CCLL and other four best benchmark algorithms on two
representative datasets: Netflix and Movielens (Figures 8 and
9). The choice is motivated by the fact that Movielens gives
best performance and Netflix gives worst performance (with
CCLL) among all the five datasets. Netflix has few features
while Movielens is feature-rich. Query nodes are bucketed
based on

• the number of neighbors they have (changes from sparse
to dense), and

• the number of triangles formed.

Each bucket holds roughly one-sixth of the nodes.
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Figure 8. Workload distribution based on number of triangles.

The workload distribution highlights the nature of each
algorithm. The behavior of the algorithms is similar for the
two workload distributions. It is seen that AA and CRW which
solely depend on link structure improve as the graph becomes
more dense (number of neighbor increases) or become more
social (number of triangle increases). The two feature based
algorithms, LL and SRW, perform well in the sparse zone, and
the improvement in the dense (more social) zone is observed
but not as significant as the two link-based algorithms. Clearly,
in these two zones (sparse and dense), two different classes of
algorithm work well.

CCLL performs well in all the zones by appropriately
learning signals in each zone. However, it even improves upon
its two constituents in each and every zone. From Figure 9 we
observe that CCLL performs best (substantially better than
LL and AA), at intermediate density. There are two reasons
behind it. Even though the graph is sparse, in these regions,
|G(q)| and |B(q)| are not far apart, which helps CCLL to train
better. Second, nodes in these zones are member of community
coclustering structures with informative block densities and
surprise feature. Factoring in the community signal helps to
positively interpret the surprise.

5.7. Variation of performance across different data sets

From Figure 4 we observe the wide variation of MAP
over various datasets, across all algorithms. The variation may
be due to various graph properties like density, clustering
coefficient or due to the (un)structureness of the constituent
features. We organize the results of MAP with respect to
the above mentioned three parameters and present the same
through Figure 10. Following the first sub-figure, we see
Movielens is having the most well-structured feature space.
It consists of genre and it is usually observed that people
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Figure 9. Workload distribution based on number of neighbors.

usually like similar movies. We find that it has the highest
MAP. Feature richness is not a perfect predictor of high MAP.
Netflix has rich features but perform relatively poorly. Like
MovieLens, Netflix is also a movie-movie network. But its
features are not as informative, because they are derived from
many other factors (like year of the movie, actors, director etc.)
apart from genre, and the distillation process seems noisy.

The other predictor of MAP is the average density (subfigure
(b)), higher density means more signal to the classifier. Hence,
MAP normally increases with increasing density, that explains
Netflix which has very low average degree perform poorly. The
third factor which enhances accuracy is local connectedness
which is captured through clustering coefficient and is plotted
in subfigure (c). The three paper repositories, WebKb, Cora
and Citeseer, have very unstructured feature space (words)
as the features are polluted by polysemy, synonymy, etc.
However, the high clustering coefficient of WebKb balances
this disadvantage and is a key reason for its good performance.
For the other algorithms LL and SRW, the same ranking is
maintained, although the performance gap between Movielens
(first) and WebKb (second) increases. This is in line with the
same observation mentioned before that LL and SRW cannot
exploit link structure well. The ranking in CRW and AA are
different and more in line with the ranking of the dataset with
respect to density and clustering coefficient.

6. CONCLUSION

We described a new two-level learning algorithm for link
prediction. At the lower level, we learn a local similarity
model across edges. At the upper level, we combine this

9



Citeseer WebKb Cora Netflix Movielens
0

0.25

0.5

0.75

1

CCLL
LL
AA
SRW
CRW

Features →

M
A

P

Netflix WebKb CiteseerMovielens Cora
0

0.25

0.5

0.75
CCLL
LL
AA
SRW
CRW

Average Degree →

M
A

P

Citeseer Netflix Cora Movielens WebKb
0

0.25

0.5

0.75
CCLL
LL
AA
SRW
CRW

Clustering Coefficient →

M
A

P

Figure 10. Variation of MAP over various datasets w.r.t. feature richness, average degree and clustering coefficient. (The same data is presented in three
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with co-clustering signals using a SVM. On diverse standard
public data sets, the resulting link predictor outperforms re-
cent LP algorithms. Another contribution of this paper is to
systematically understand the areas of inefficiency of recent
LP algorithms and consequently establish the importance of
this two-level learning scheme, and the key features we use.
We show that our algorithm consistently outperforms four
strong baselines when link information is neither too sparse
nor too dense. In practice, a large amount of requests for link
recommendation will actually come from this zone, hence the
significance of the result can be even more than what is stated
in the paper. In future work, it will be of interest to combine the
signals we exploit with supervised personalized PageRank [2].
Another possibility is to replace item-wise or pairwise losses
with list-wise losses suitably aggregated over query samples.
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