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Abstract

Graph-structured data is ubiquitous across diverse domains like
social networks, search, question answering, and drug discovery.
Effective retrieval of (sub-)graphs with relevant substructures has
become critical to the success of these applications. This proposed
tutorial will introduce attendees to state-of-the-art neural meth-
ods for graph retrieval, highlighting architectures that effectively
model relevance through innovative combinations of early and late
interaction mechanisms.

Participants will explore relevance models that represent graphs
as sets of embeddings, enabling alignment-driven similarity scoring
between query and corpus graphs and supporting diverse cost
functions, both symmetric and asymmetric. We will also discuss
compatibility with Approximate Nearest Neighbor (ANN) methods,
covering recent advances in locality-sensitive hashing (LSH) and
other indexing techniques that significantly enhance scalability in
graph retrieval.

The tutorial includes hands-on experience with an accessible,
PyTorch-integrated toolkit that provides downloadable graph re-
trieval datasets and baseline implementations of recent methods.
Participants will learn to adapt these methods for multi-modal ap-
plications — such as molecule, text, and image retrieval — where
graph-based retrieval proves particularly effective. Designed for re-
searchers and practitioners, this session delivers both foundational
concepts and practical tools for implementing and scaling neural
graph retrieval solutions across interdisciplinary applications.
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1 Topic and relevance

With the proliferation of graph-structured data, efficient retrieval
of relevant (sub-)graphs has become foundational across numer-
ous applications. From social networks to e-commerce platforms
to semantic search engines, large-scale graph retrieval powers ev-
erything from personalized recommendations to fraud detection
and knowledge-based question answering [2, 8, 19, 34, 37, 38]. Be-
yond web-based applications, graph retrieval is essential across
diverse fields, including drug discovery [46], image and video anal-
ysis [18, 40], software analysis [21], frequent subgraph mining [45],
circuit design [25], and community detection [8], where uncovering
complex structural relationships within vast datasets is critical for
generating insights and driving innovation.

Recent tutorials related to graph ML in comparable conferences
such as CIKM 2024, CIKM 2023, CIKM 2022, WebConf 2025 empha-
size scalable analytics, clustering, spatio-temporal modeling, user
community profiling, blockchain optimization, few shot learning,
domain shift, LLM integration, etc., leaving relatively unserved the
critical problems of indexing and interpretable retrieval.

As the volume and complexity of graph data grow, retrieval meth-
ods must adapt to accommodate a wide range of multi-modal data
sources, such as knowledge graphs [3, 43], molecular and chemical
structures [23], user interaction networks, and product or content
recommendation graphs. Effective graph retrieval demands a bal-
anced approach to similarity, integrating both structural similarity
and feature or label similarities to capture a nuanced understand-
ing of relationships. This challenge extends beyond approximate
matching to include sophisticated graph similarity measures, such
as subgraph isomorphism, graph edit distance (GED), and maximum
common subgraph (MCS) size, each offering unique relevance cues.
Building retrieval systems that address these varied measures is
essential for achieving the accuracy, scalability, and interpretability
needed in diverse real-world scenarios.

The design of neural graph retrieval systems necessitates two key
qualities: interpretability and scalability. In terms of interpretabil-
ity, it is essential that the system not only retrieve highly relevant
results, but also offer clear, understandable justifications for its
choices. An ideal system would generate approximate alignment
witnesses, which show the underlying reasons for a given match
by highlighting important alignments between nodes and edges
in query and corpus graphs. Furthermore, similar to traditional
information retrieval systems, graph retrieval systems should be
trainable under distant supervision, being provided only broader rel-
evance indicators rather than relying on detailed alignment labels.

Scalability, meanwhile, is a central challenge for graph retrieval,
especially as data volumes increase. Traditional graph matching ap-
proaches often rely on cross-graph neural alignment, which renders
each corpus graph representation query-dependent and prevents
the precomputation of embeddings for efficient retrieval. This limits
the ability to implement high-speed, offline indexing techniques,


https://doi.org/10.1145/3746252.3761454
https://doi.org/10.1145/3746252.3761454
https://cikm2024.org/tutorials/
https://uobevents.eventsair.com/cikm2023/tutorials
https://www.cikm2022.org/tutorials
https://www2025.thewebconf.org/accepted-tutorials

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

such as locality-sensitive hashing (LSH) and other Approximate
Nearest Neighbor (ANN) methods.

In recent years, there has been significant advances in the area of
neural graph retrieval [4, 5, 17, 20, 22, 26, 47]. These methods encom-
pass a wide landscape of techniques, design choices, applications
and ML methods. A clearer understanding on these methods among
web researchers will allow them to seamlessly use these techniques
for a plethora of applications, from multimodal retrieval [44] to
question answering [38, 39].

The organizers of the tutorial have extensive experience in neural
graph retrieval methods, other applications in web data and general
areas in web data driven modeling [6, 7, 11-15, 17, 19, 27-33, 35,
36, 38, 41]. Two of the proposers share experience of presenting
several comparable or longer tutorials at WebConf, SIGIR, CIKM,
SIGKDD, NeurIPS and AAAIL Their expertise would help in the
dissemination of this hands-on tutorial.

2 Tutorial content

At the outset, this tutorial will comprehensively cover the recent
advancements on neural graph retrieval methods, guiding partic-
ipants through the evolution from early neural graph matching
models to modern alignment-driven approaches. We will explore
both traditional and recent methods for scalable graph retrieval,
delving into ANN compatibility, interpretability enhancements, and
set alignment-based scoring functions, equipping attendees with a
thorough understanding of the latest advancements in neural graph
retrieval. Next, we explain the tutorial contents in details.

Overview and applications Measuring relevance score or sim-
ilarity between graphs dated back to graph kernels [42]. In re-
cent years, deep graph matching has been a primary focus of the
computer vision community, with numerous neural models de-
veloped to identify node-level alignments within graphs. These
models typically require explicit supervision, relying on ground
truth alignments to compute various loss functions. More recent
advancements in neural graph retrieval have focused on training
with distant supervision [4, 5, 20, 22, 26, 47]. These models typi-
cally encode graphs as single, graph-level representations that are
compared to compute similarity scores. We will begin with a high
level overview of the above works, in the first part of the tutorial.

Graph similarity based on whole graph embeddings Next,
we will describe how we can represent an entire graph into a vector,
so that we can approximate graph similarity using vector based simi-
larity. In this context, we will discuss SInGNN [4], NeuroMatch [22],
ERIC [47], GEN [20]. We will highlight their modeling architecture,
training methods, accuracy and performance on current datasets.

Graph similarity based on graph alignments While efficient,
this single-vector approach is limited in flexibility and struggles
to adapt to different similarity measures, such as subgraph iso-
morphism, MCS, and GED, resulting in suboptimal performance.
Additionally, the black-box nature of these similarity scoring mod-
els does not provide interpretable justifications, leaving out explicit
alignment information.

More recent approaches have made progress by introducing
hybrid architectures that combine early and late interaction mech-
anisms to better handle combinatorial graph matching tasks. These
models integrate neural architectures aligned with combinatorial
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concepts to handle subgraph isomorphism [33] , MCS [30], and
GED [17]. Such techniques improve interpretability by providing
alignment-based justifications, making it possible to see which
elements within the graphs contribute to their similarity scores.

Efficient retrieval  For scalability, earlier approaches based on
coarse graph-level representations could leverage Approximate
Nearest Neighbor (ANN) techniques, enabling sublinear-time re-
trieval for various symmetric [9, 10] and asymmetric scoring func-
tions [24, 29]. More recent efforts are also underway to adapt ANN
compatibility to set alignment-based scoring functions [1, 16], aim-
ing to achieve both scalability and flexibility in complex graph
retrieval scenarios.

PyTorch Toolkit for Graph Retrieval To support practical
experimentation and application, this tutorial introduces a PyTorch-
integrated toolkit designed to make graph retrieval techniques ac-
cessible and adaptable. This toolkit offers readily downloadable
datasets and baseline implementations of recent methods, provid-
ing researchers with the tools to adapt retrieval models for multi-
modal applications, including molecule, text, and image retrieval.
By combining the theoretical underpinnings of neural graph re-
trieval with hands-on experience using this toolkit, participants will
leave equipped to implement scalable, interpretable graph retrieval
models that are adaptable to a range of applications.

3 Tutorial Style

This will be a hands-on tutorial, combining interactive lecture seg-
ments with practical exercises. Participants will work with a pre-
configured Jupyter notebook, requiring them to have Python and
PyTorch installed along with specific packages for graph process-
ing (e.g., PyTorch Geometric). Prior to the session, attendees will
receive detailed setup instructions, including links to the toolkit
and datasets, to ensure a smooth and engaging experience.

4 Schedule

The tutorial will be structured as a half-day session, blending lec-
tures with hands-on exercises.

(A) Overview of Neural Graph Retrieval: (1) Duration: 20 min-
utes. (2) Presenter: Soumen Chakrabarti. (3) Description: An intro-
duction to graph-based applications across various domains (e.g.,
web search, KGs, social networks, drug discovery, image retrieval),
emphasizing the unique challenges in graph retrieval and the rele-
vance of neural models.

(B) Graph similarity based on whole graph embeddings: (1) Du-
ration: 30 minutes (2) Presenter: Abir De (3) Description: Overview
of graph representation learning, including historical neural mod-
eling approaches and the evolution of embedding-based relevance
measures. Discussion of trade-offs and considerations in choosing
graph similarity techniques for different applications.

(C) Recent Advances in Alignment-Driven Modeling: (1) Dura-
tion: 25 minutes (2) Presenter: Indradyumna Roy (3) Description:
Presentation on recent advancements in alignment-driven modeling
for graph retrieval. Explanation of alignment techniques, relevance
scoring, and interpretability through alignment witnesses.

(D Break, 10 minutes

(E) Introduction to ANN and LSH for Graph Retrieval: (1) Dura-
tion: 20 minutes (2) Presenter: Soumen Chakrabarti (3) Description:
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Introduction to Approximate Nearest Neighbor (ANN) methods and
Locality-Sensitive Hashing (LSH) with a historical perspective from
web search to modern applications in graph retrieval. Discussion
on scalability benefits and indexing for real-time applications.

(F) Hands-On Demo: PyTorch Toolkit for Graph Retrieval: (1) Du-
ration: 40 minutes (2) Presenter: Indradyumna Roy (3) Description:
Interactive session on using the PyTorch-based toolkit for graph re-
trieval, including implementations of both retrieval and LSH/ANN
techniques. Participants will work with datasets and try out model
adaptations for retrieval tasks.

(G) Applications, Open Challenges, and Future Directions:
(1) Duration: 20 minutes (2) Presenter: Abir De (3) Description:
Discussion of current and potential applications of neural graph re-
trieval in fields such as knowledge graphs, NLP, and drug discovery.
Overview of open challenges and promising research directions.
(H) Q&A and Discussion: (1) Duration: 15 minutes (2) Descrip-
tion: An open session for participants to ask questions, clarify
doubts, and discuss future possibilities in neural graph retrieval.

5 Audience

This tutorial is intended for a diverse audience, including students,
researchers, and industry professionals with an interest in apply-
ing neural graph retrieval methods to real-world challenges. We
recommend that attendees have a foundational understanding of
machine learning and neural networks, as well as familiarity with
Python and PyTorch. Knowledge of graph theory and basic con-
cepts in deep learning would be beneficial but is not required, as
the tutorial will cover introductory concepts before progressing to
more advanced topics.

Prerequisite Knowledge (1) Basic understanding of machine
learning principles and neural network architectures. (2) Famil-
iarity with programming in Python and experience with PyTorch.
(3) (Optional) Prior knowledge of graph theory and representation
learning concepts, although introductory material will be provided.

Potential Learning Outcomes (1) An understanding of funda-
mental concepts in neural graph retrieval, including relevance mod-
els, embedding techniques, and alignment-based scoring. (2) Prac-
tical experience implementing scalable graph retrieval models and
adapting them for specific applications, such as drug discovery,
video and image retrieval, knowledge graphs (KG) retrieval, chip
design, and recommendation systems, where graph problems fre-
quently occur. (3) Hands-on experience with a PyTorch-based toolkit
for graph retrieval, enabling them to work with downloadable
datasets and experiment with baseline models.

6 Previous Editions

This is the first edition of this tutorial, and it has not been presented
at any prior conference or workshop.

7 Tutorial Materials

The following materials will be provided to attendees to enhance

learning and ensure a comprehensive, hands-on experience:

e Website: A dedicated tutorial website will host all materials,
including setup instructions, download links for datasets, and
relevant resources.
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o Slides: Presentation slides will be made available for download,
providing a structured overview of the concepts discussed.

e Supplementary Materials: Attendees will have access to cu-
rated references and supplementary readings for further study.

o Software and Setup Instructions: Detailed setup instructions
will be provided for Python, PyTorch, and required libraries (e.g.,
PyTorch Geometric) to ensure compatibility with the tutorial’s
Jupyter notebooks.

e Source Code and Demos: Attendees will receive access to
source code for example implementations, hands-on demos, and
baseline graph retrieval models, ensuring practical familiarity
with the techniques covered.

e Recorded Videos and Demos: Videos demonstrating key tech-
niques and sample workflows will be shared, along with record-
ings of the tutorial for future reference.

All materials provided will be open-source and free of copyright
issues, with source code and datasets available under open licenses.

8 Organizers

Indradyumna Roy He is a final-year Ph.D. candidate in the
Department of Computer Science and Engineering at IIT Bom-
bay. His research specializes in neural graph retrieval, combining
deep learning methods with graph combinatorial optimization, scal-
able retrieval techniques, and interpretability in graph models. His
work is supported by prestigious fellowships, including the Prime
Minister’s Research Fellowship (PMRF), Qualcomm Innovation Fel-
lowship, and Google Ph.D. Fellowship. He has published at leading
venues such as NeurIPS, AAAI and InterSpeech, and contributed
as a reviewer for major conferences like NeurIPS, ICLR, AAAL and
AISTATS. His practical expertise in scalable and interpretable graph
retrieval systems brings valuable insights to this tutorial, provid-
ing participants with an in-depth understanding of state-of-the-art
developments and applications in the field.

Soumen Chakrabarti He is a Professor in the Department of
Computer Science and Engineering at IIT Bombay, internationally
recognized for his work on graph-based representation learning,
knowledge graphs, and advanced search technologies. His research
has been instrumental in enhancing graph neural networks, knowl-
edge graph embeddings, and multi-modal question answering. He
has published extensively in prestigious venues like WWW, SI-
GIR, SIGKDD, EMNLP, and VLDB and received numerous awards,
including the WWW Best Paper Award (1999), the ICDE 10-Year
Influential Paper Award (2012), and the Bhatnagar Prize (2014). He
authored one of the earliest books on Web search and mining, a
foundational reference in the field, and holds 13 U.S. patents. His
roles in organizing premier conferences, such as founding the ACM
Web Search and Data Mining (WSDM) Conference series, under-
score his ability to lead discussions at the intersection of graphs and
machine learning. With his deep knowledge and practical insights,
Prof. Chakrabarti is exceptionally qualified to deliver a thorough
and engaging introduction to neural graph retrieval.

Abir De He is an Assistant Professor in the Department of Com-
puter Science and Engineering at the Indian Institute of Technology
(II'T) Bombay. Prof. De’s research focuses on developing neural ar-
chitectures for graph-based tasks, data-efficient learning methods,
and human-in-the-loop models—foundational elements in neural
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graph retrieval. His numerous awards, including the INAE Young
Engineer Award (2021), the Prof. Krithi Ramamritham Award for
Creative Research at IIT Bombay (2020), and the INAE Best Ph.D.
Project Award (2019), underscore his impact and expertise in these
areas. Prof. De has organized influential events such as (1) the Work-
shop on Subset Selection in Machine Learning at ICML 2021, (2)
the Workshop on Temporal Point Processes at NeurIPS 2022, and
(3) the IndoML Symposium in 2023, demonstrating his ability to
lead discussions on complex machine learning topics.
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